Algebra 1 Chapter 7 Section 7-2

Expanding Powers

$$3^3 \cdot 3^2 = (3 \cdot 3 \cdot 3) \cdot (3 \cdot 3) = 3^5$$

When you multiply power with the same base you can add the exponents.

$$3^3 \cdot 3^2 = 3^{3+2} = 3^5$$

Simplify Only Each Base Once, Then Multiply

$$(2^2)(2^4) =$$

$$(3)(3^4) =$$

$$(7^4)(7^{-2}) =$$

2⁶ 64

3⁵ 243

7² 49

Simplify

$$(ab^2)(a^3b^2) =$$

$$(3h^6)(5hk^4) =$$

$$(x^4y^9z^3)(xy^{-4})(xz^{-1}) =$$

$$\frac{1}{a^3a^{-7}} =$$

 a^4b^4

 $15h^7k^4$

 $x^6y^5z^2$

 a^4

Fraction Exponents

$$5^2 = 25$$

$$5 = 25^{\left|\frac{1}{2}\right|}$$

A fraction exponent (denominator) tells you how many times to multiply a number by itself to get the base.

In our example, we multiply five times five (two times) to get 25.

Using Fraction Exponents

$$2 = 32^{x}$$
 What is x? $x = \frac{1}{5}$

multiply to get 32?

$$125^{\frac{1}{3}} = x \qquad \text{What is } x? \qquad x = 5$$

$$1^{\frac{1}{7}} = x \quad \text{What is } x? \qquad x = 1$$

$$16^{\frac{3}{4}} = x$$
 What is x? $x = 8$

Scientific Notation

In scientific notation, the largest place used is the one's place.

Scientific notation is a way of "abbreviating" large numbers:

Examples: 72,000 can be written 7.2 x 104

.0543 can be written 5.43 x 10⁻²

It also allows multiplying large numbers more simply:

Example: What is (500) · (7100)?

$$(5 \times 10^2)(7.1 \times 10^3) \longrightarrow (5)(7.1) \cdot (10^2)(10^3)$$

 (35.5×10^5)

$$(3.55 \times 10^6) \longrightarrow 3,550,000$$

Scientific Notation

In scientific notation, the largest place used is the one's place.

Scientific notation is a way of "abbreviating" large numbers:

Examples: 72,000 can be written 7.2 x 104

.0543 can be written 5.43 x 10⁻²

It also allows multiplying decimals more simply:

Example: What is (10.7) · (.002)?

 $(1.07 \times 10^{1})(2 \times 10^{-3}) \longrightarrow (1.07)(2) \cdot (10^{1})(10^{-3})$

 (2.14×10^{-2})

.0214

Solve Using Scientific Notation

Multiply:

$$(3.2 \times 10^5)(2 \times 10^7)$$

$$(6 \times 10^{23})(2 \times 10^{-13})$$

$$6.4 \times 10^{12}$$

$$12 \times 10^{10} = 1.2 \times 10^{11}$$