

 $9^{2} + y^{2} = 41^{2}$ $81 + y^{2} = 1681$ $y^{2} = 1600$ y = 40

$$1^{2} + (4/3)^{2} = y^{2}$$

 $1 + 16/9 = y^{2}$
 $25/9 = y^{2}$
 $y = 5/3$

Pythagorean Triples

Are the following Pythagorean Triples

5, 11, 12 15, 20, 25

7, 24, 25 3, 4, 5

NO YES

YES YES

С

If the square of the length of the longest side of a triangle is greater than the sum of the squares of the lengths of the other two sides, then the triangle is obtuse.

Theorem 8-4

Theorem

If the square of the length of the longest side of a triangle is less than the sum of the squares of the lengths of the other two sides, then the triangle is acute.

b

Then . . . $\triangle ABC$ is acute

 $\triangle ABC$ is obtuse

Using the Theorems
Are the following triangles acute, obtuse or right?
Sides: 7, 5, 10
Sides: 9, 15, 13
Sides: 1, 1.2, 2

Obtuse

Acute

Obtuse

$$x^{2} + 3^{2} = (2x)^{2}$$

 $x^{2} + 9 = 4x^{2}$
 $9 = 3x^{2}$
 $3 = x^{2}$
 $x = square root of 3$

Pages 495 - 496 # 7 - 31 odd