Geometry

Chapter 9 Section 9-3

Clock Hands

You are given a keepsake clock by a cartoon mouse. At 3:00 the hands look like: What will the symbol on the minute hand look like at:

Rotations

Key Concept Rotation About a Point

A **rotation** of x° about a point Q, called the **center of rotation**, is a transformation with these two properties:

- The image of Q is itself (that is, Q' = Q).
- For any other point V, QV' = QV and m∠VQV' = x.

The number of degrees a figure rotates is the angle of rotation.

A rotation about a point is a rigid motion. You write the x° rotation of $\triangle UVW$ about point Q as $r_{(x^{\circ}, Q)}(\triangle UVW) = \triangle U'V'W'$.

 $r_{(30,A)}(\Delta XYZ)$ is the 30° rotation of ΔXYZ around point A ***rotations are always assumed to be counterclockwise

Using a Rotation

Congratulations! You're on Wheel of Fortune. Your marker is on the \$700 wedge of the wheel. There are 24 congruent wedges on the wheel. Which wedge would you be on if you spun the wheel counterclockwise at a rotation of 210⁰?

Using a Rotation

A rotation of what measure would put you on \$550?

Rotations Within a Polygon

A regular hexagon (ABCDEF) is rotated 120° around the absolute center of the hexagon. Which points in the image of the transformation could be in the same position as point D in the preimage?

An equilateral triangle is centered at the origin. Write three rotation rules that would map the triangle onto itself?

Rotations in the Coordinate Plane

What is the $r_{(90, 0)}(A)$?

What is the $r_{(270, 0)}(B)$?

What is the $r_{(180, 0)}(ABC)$?

*** "O" is the origin at (0, 0)

Homework

Pages 565 - 567 # 17 - 22 all, 27, 31, 34, 35, 59, 60, 61